Sub-aerial biofilms as blockers of solar radiation: spectral properties as tools to characterise material-relevant microbial growth |
| |
Affiliation: | 1. Department 4 (Materials & Environment), Federal Institute for Materials Research and Testing (Bundesanstalt für Materialforschung und -prüfung, BAM), Unter den Eichen 87, 12205 Berlin, Germany;2. Department 8 (Non-destructive Testing), Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin, Germany;3. Department for Life Science Engineering, University of Applied Sciences, Wilhelminenhofstraße 76/77, 12459 Berlin, Germany;4. Free University of Berlin, Department of Biology, Chemistry & Pharmacy and Department of Earth Sciences, Malteserstrasse 74-100, 12249 Berlin, Germany;1. Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico;2. Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico;3. Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana-Iztapalapa, Mexico;4. Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Mexico;5. Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico;6. Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico;7. Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico;8. Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico;1. Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China;2. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China;3. University of Chinese Academy of Sciences, Beijing 100049, PR China;1. Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan;2. United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan;1. Mexel Industries SAS, Route de Compiègne, Verberie 60410, France;2. Laboratoire de Microbiologie des Environnements Extrèmes, UMR 6197, Institut Français de Recherche pour l’Exploitation de la Mer, Centre de Brest, Plouzané, France;3. Laboratoire de Microbiologie des Environnements Extrèmes, UMR 6197, Université de Bretagne Occidentale, UEB, IUEM, Plouzané, France;4. Laboratoire de Microbiologie des Environnements Extrèmes, UMR 6197, CNRS, Plouzané, France;5. Laboratoire de Magnétisme de Bretagne, Université de Brest, EA 4522, 6 Av. le Gorgeu, Brest Cedex 29285, France;6. Ecotox, 11 Rue Principale, Affringues 62380, France;7. AiMB : Advices in Marine Biotechnology, Plouzané 29280, France |
| |
Abstract: | Sub-aerial biofilms (SABs) are ubiquitous microbial communities that develop at the interface between hard surfaces and the atmosphere. Inherent SAB “core-settlers” include phototrophic algae, cyanobacteria, heterotrophic bacteria and microcolonial fungi (MCF). SABs do not simply cover hard surfaces; they interact with them in myriads of ways and bind to the underlying substrate. Secretion of extracellular mucilage aids adhesion, while organic acids and acidic polysaccharides weather the surface. As protection against solar radiation, many members of the SAB consortia produce shielding pigments while the phototrophic inhabitants are laden with photosynthetic pigments. All absorb light of many wavelengths and in addition, the cells themselves scatter light. Both effects change the spectra of incoming radiation (including wavelengths that are converted to electricity by photovoltaic cells) and decrease its intensity. To quantify these effects on SABs as complex entities of organisms and pigments, we measured the spectral properties of model and natural biofilms transferred to glass. Here we show that SABs growing on solar panels and other substrates scatter incident radiation between 250 nm up to 1800 nm and block up to 70% of its transmission. Model biofilms have the advantage that their microbial components can be “tuned” to resemble natural ones of different compositions thus providing a novel materials-testing tool. |
| |
Keywords: | Material-colonising microorganisms Microcolonial fungi Glass biodeterioration Solar panels Biofilm-impaired transmittance of radiation |
本文献已被 ScienceDirect 等数据库收录! |
|