首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Short and prolonged exposure to hyperglycaemia in human fibroblasts and endothelial cells: Metabolic and osmotic effects
Institution:1. Superior Institute of Biomedical Sciences, State University of Ceará, Brazil;2. Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil;3. Department of Biophysics and Physiology, Federal University of Piauí, Brazil
Abstract:High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells.We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species.We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.
Keywords:Mitochondria  Human fibroblasts  Human endothelial cells  Hyperglycaemia  Hyperosmosis  GLUT"}  {"#name":"keyword"  "$":{"id":"kw0040"}  "$$":[{"#name":"text"  "_":"glucose transporter  TCA"}  {"#name":"keyword"  "$":{"id":"kw0050"}  "$$":[{"#name":"text"  "_":"tricarboxylic acid cycle  ETC"}  {"#name":"keyword"  "$":{"id":"kw0060"}  "$$":[{"#name":"text"  "_":"electron transport chain  mitochondrial transmembrane potential  ROS"}  {"#name":"keyword"  "$":{"id":"kw0080"}  "$$":[{"#name":"text"  "_":"reactive oxygen species  HDF"}  {"#name":"keyword"  "$":{"id":"kw0090"}  "$$":[{"#name":"text"  "_":"human dermal fibroblasts  HDMEc"}  {"#name":"keyword"  "$":{"id":"kw0100"}  "$$":[{"#name":"text"  "_":"human dermal microvascular endothelial cells  OCR"}  {"#name":"keyword"  "$":{"id":"kw0110"}  "$$":[{"#name":"text"  "_":"oxygen consumption rate  ECAR"}  {"#name":"keyword"  "$":{"id":"kw0120"}  "$$":[{"#name":"text"  "_":"extracellular acidification rate  ATP"}  {"#name":"keyword"  "$":{"id":"kw0130"}  "$$":[{"#name":"text"  "_":"adenosine triphosphate  ADP"}  {"#name":"keyword"  "$":{"id":"kw0140"}  "$$":[{"#name":"text"  "_":"adenosine diphosphate  NAD+/NADH"}  {"#name":"keyword"  "$":{"id":"kw0150"}  "$$":[{"#name":"text"  "_":"nicotinamide adenine dinucleotide  PDH"}  {"#name":"keyword"  "$":{"id":"kw0160"}  "$$":[{"#name":"text"  "_":"pyruvate dehydrogenase  LDH"}  {"#name":"keyword"  "$":{"id":"kw0170"}  "$$":[{"#name":"text"  "_":"lactic dehydrogenase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号