首页 | 本学科首页   官方微博 | 高级检索  
     


Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of southwest China
Authors:Yun-peng Nie  Hong-song Chen  Ke-lin Wang  Ya-li Ding
Affiliation:1. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
2. Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, Guangxi, China
3. University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:A series of studies claimed that deep root development of plant established in karst regions was facilitated by fractured bedrock beneath the shallow soils; however, bedrock is not a uniform medium for root proliferation. We hypothesized plant species that survived in different karst habitats had some other rooting characteristics rather than deep penetration. To test the hypothesis, coarse root systems of two widely distributed woody species (one tree and one shrub) growing in three typical rocky karst habitats (shallow soil, loose rocky soil and exposed rock) were excavated in karst region of southwest China. Root systems were investigated based on four parameters: maximum rooting depth, maximum radial extent, root tapering pattern and root curvature. In all the three habitats, maximum rooting depths were no deeper than 120 and 40 cm for the tree and shrub species, respectively. Maximum radial extents were extremely large compared with maximum rooting depth, indicating that rooting characteristics were dominated by horizontal extension rather than deep penetration. Roots of both species growing in shallow soil habitat tapered gradually and curved slightly, which was consistent with the specific characteristics of this habitat. On the contrary, roots of the tree species growing in the other two habitats tapered rapidly but curved slightly, while roots of the shrub species tapered gradually but curved strongly. It was speculated that limited depths and rapid tapering rates of the tree roots were likely compensated by their utmost radial extensions, while the shrub species might benefit from its root curvature as the associated root tropisms may increase the ability of root to encounter more water and contribute to potentially high resource absorption efficiency. Our results highlight the importance of taking shallow-rooted species into account in understanding the distribution of natural plant communities and predicting future vegetation dynamics in karst regions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号