首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of phosphomimetic and non‐phosphorylatable mutations of phospholemman on L‐type calcium channels gating in HEK 293T cells
Authors:Zhi‐Wen Zhou  Yi‐Bo Jiang  Wei Li  Xiao‐Meng Chen  Yi‐Gang Li
Affiliation:Department of Cardiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
Abstract:Background : Phospholemman (PLM) is an important phosphorylation substrate for protein kinases A and C in the heart. Until now, the association between PLM phosphorylation status and L‐type calcium channels (LTCCs) gating has not been fully understood. We investigated the kinetics of LTCCs in HEK 293T cells expressing phosphomimetic or nonphosphorylatable PLM mutants. Methods : The LTCCs gating was measured in HEK 293T cells transfected with LTCC and wild‐type (WT) PLM, phosphomimetic or nonphosphorylatable PLM mutants: 6263AA, 6869AA, AAAA, 6263DD, 6869DD or DDDD. Results : WT PLM significantly slowed LTCCs activation and deactivation while enhanced voltage‐dependent inactivation (VDI). PLM mutants 6869DD and DDDD significantly increased the peak of the currents. 6263DD accelerated channel activation, while 6263AA slowed it more than WT PLM. 6869DD significantly enhanced PLM‐induced increase of VDI. AAAA slowed the channel activation more than 6263AA, and DDDD accelerated the channel VDI more than 6869DD. Conclusions : Our results demonstrate that phosphomimetic PLM could stimulate LTCCs and alter their dynamics, while PLM nonphosphorylatable mutant produced the opposite effects.
Keywords:phospholemman  phosphorylation sites mutation  L‐type calcium channels  activation  voltage‐dependent inactivation  deactivation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号