首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unlinking chromosome catenanes in vivo by site-specific recombination
Authors:Grainge Ian  Bregu Migena  Vazquez Mariel  Sivanathan Viknesh  Ip Stephen C Y  Sherratt David J
Institution:Department of Biochemistry, University of Oxford, Oxford, UK.
Abstract:A challenge for chromosome segregation in all domains of life is the formation of catenated progeny chromosomes, which arise during replication as a consequence of the interwound strands of the DNA double helix. Topoisomerases play a key role in DNA unlinking both during and at the completion of replication. Here we report that chromosome unlinking can instead be accomplished by multiple rounds of site-specific recombination. We show that step-wise, site-specific recombination by XerCD-dif or Cre-loxP can unlink bacterial chromosomes in vivo, in reactions that require KOPS-guided DNA translocation by FtsK. Furthermore, we show that overexpression of a cytoplasmic FtsK derivative is sufficient to allow chromosome unlinking by XerCD-dif recombination when either subunit of TopoIV is inactivated. We conclude that FtsK acts in vivo to simplify chromosomal topology as Xer recombination interconverts monomeric and dimeric chromosomes.
Keywords:chromosome segregation  decatenation  FtsK  tangles  XerCD
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号