首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Persistent sodium current is a nonsynaptic substrate for long-term associative memory
Authors:Nikitin Eugeny S  Vavoulis Dimitris V  Kemenes Ildikó  Marra Vincenzo  Pirger Zsolt  Michel Maximilian  Feng Jianfeng  O'Shea Michael  Benjamin Paul R  Kemenes György
Institution:Eugeny S. Nikitin, Dimitris V. Vavoulis, Ildikó Kemenes, Vincenzo Marra, Zsolt Pirger, Maximilian Michel, Jianfeng Feng, Michael O'Shea, Paul R. Benjamin,György Kemenes,
Abstract:Although synaptic plasticity is widely regarded as the primary mechanism of memory 1], forms of nonsynaptic plasticity, such as increased somal or dendritic excitability or membrane potential depolarization, also have been implicated in learning in both vertebrate and invertebrate experimental systems 2], 3], 4], 5], 6] and 7]. Compared to synaptic plasticity, however, there is much less information available on the mechanisms of specific types of nonsynaptic plasticity involved in well-defined examples of behavioral memory. Recently, we have shown that learning-induced somal depolarization of an identified modulatory cell type (the cerebral giant cells, CGCs) of the snail Lymnaea stagnalis encodes information that enables the expression of long-term associative memory 8]. The Lymnaea CGCs therefore provide a highly suitable experimental system for investigating the ionic mechanisms of nonsynaptic plasticity that can be linked to behavioral learning. Based on a combined behavioral, electrophysiological, immunohistochemical, and computer simulation approach, here we show that an increase of a persistent sodium current of this neuron underlies its delayed and persistent depolarization after behavioral single-trial classical conditioning. Our findings provide new insights into how learning-induced membrane level changes are translated into a form of long-lasting neuronal plasticity already known to contribute to maintained adaptive modifications at the network and behavioral level 8].
Keywords:SYSNEURO
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号