首页 | 本学科首页   官方微博 | 高级检索  
     


Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain
Authors:Lee A  Frank D W  Marks M S  Lemmon M A
Affiliation:Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
Abstract:The dynamins are 100 kDa GTPases involved in the scission of endocytic vesicles from the plasma membrane [1]. Dynamin-1 is present in solution as a tetramer [2], and undergoes further self-assembly following its recruitment to coated pits to form higher-order oligomers that resemble 'collars' around the necks of nascent coated buds [1] [3]. GTP hydrolysis by dynamin in these collars is thought to accompany the 'pinching off' of endocytic vesicles [1] [4]. Dynamin contains a pleckstrin homology (PH) domain that binds phosphoinositides [5] [6], which in turn enhance both the GTPase activity [5] [7] [8] and self-assembly [9] [10] of dynamin. We recently showed that the dynamin PH domain binds phosphoinositides only when it is oligomeric [6]. Here, we demonstrate that interactions between the dynamin PH domain and phosphoinositides are important for dynamin function in vivo. Full-length dynamin-1 containing mutations that abolish phosphoinositide binding by its PH domain was a dominant-negative inhibitor of receptor-mediated endocytosis. Mutated dynamin-1 with both a defective PH domain and impaired GTP binding and hydrolysis also inhibited receptor-mediated endocytosis. These findings suggest that the role of the PH domain in dynamin function differs from that seen for other PH domains. We propose that high-avidity binding to phosphoinositide-rich regions of the membrane by the multiple PH domains in a dynamin oligomer is critical for dynamin's ability to complete vesicle budding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号