首页 | 本学科首页   官方微博 | 高级检索  
     


Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor
Authors:Babcock Gregory J  Farzan Michael  Sodroski Joseph
Affiliation:Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract:CXCR4, a member of the G protein-coupled receptor family of proteins, is the receptor for stromal cell-derived factor (SDF-1 alpha) and is a principal coreceptor for human immunodeficiency virus type 1 (HIV-1). CXCR4 has also been implicated in breast cancer metastasis. We examined the ability of CXCR4 to homomultimerize in detergent-solubilized cell lysates and in the membranes of intact cells. CXCR4 was found to multimerize in cell lysates containing the detergents CHAPSO or Cymal-7 but not other detergents that have been shown to disrupt the native conformation of CXCR4. CXCR4 expression levels did not affect the observed multimerization and differentially tagged CXCR4 molecules associated only when coexpressed in the same cell. CXCR4 did not interact with CCR5, the other principal HIV-1 coreceptor, when the two proteins were coexpressed. Using bioluminescence resonance energy transfer (BRET(2)), we demonstrated that CXCR4 multimers are found naturally in the intact cell membrane, in both the presence and absence of multiple CXCR4 ligands. Ligand binding did not significantly alter the observed BRET(2) signal, suggesting that CXCR4 exists as a constitutive oligomer. In cell lysates prepared with non-denaturing detergents, CXCR4 sedimented in a manner consistent with a dimer, whereas CCR5 sedimented as a monomer under these conditions. The stable, constitutive dimerization of CXCR4 may contribute to its biological functions in chemokine binding, signaling, and HIV-1 entry.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号