首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of synaptophysin degradation by mammalian homologues of seven in absentia.
Authors:Tiffany C Wheeler  Lih-Shen Chin  Yankun Li  Francine L Roudabush  Lian Li
Affiliation:Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Abstract:Synaptophysin is an integral membrane protein of synaptic vesicles characterized by four transmembrane domains with both termini facing the cytoplasm. Although synaptophysin has been implicated in neurotransmitter release, and decreased synaptophysin levels have been associated with several neurodegenerative diseases, the molecular mechanism that regulates the degradation of synaptophysin remains unsolved. Using the cytoplasmic C terminus of synaptophysin as bait in a yeast two-hybrid screen, we identified two synaptophysin-binding proteins, Siah-1A and Siah-2, which are rat homologues of Drosophila Seven in Absentia. We demonstrated that Siah-1A and Siah-2 associate with synaptophysin both in vitro and in vivo and defined the binding domains of synaptophysin and Siah that mediate their association. Siah proteins exist in both cytosolic and membrane-associated pools and co-localize with synaptophysin on synaptic vesicles and early endosomes. In addition, Siah proteins interact specifically with the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 and facilitate the ubiquitination of synaptophysin. Furthermore, overexpression of Siah proteins promotes the degradation of synaptophysin via the ubiquitin-proteasome pathway. Our findings indicate that Siah proteins function as E3 ubiquitin-protein ligases to regulate the ubiquitination and degradation of synaptophysin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号