首页 | 本学科首页   官方微博 | 高级检索  
     


Study on mapping Quantitative Trait Loci for animal complex binary traits using Bayesian-Markov chain Monte Carlo approach
Authors:Jianfeng Liu  Yuan Zhang  Qin Zhang  Lixian Wang  Jigang Zhang
Affiliation:(1) College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China;(2) Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100094, China
Abstract:It is a challenging issue to map Quantitative Trait Loci (QTL) underlying complex discrete traits,which usually show discontinuous distribution and less information,using conventional statisti-cal methods. Bayesian-Markov chain Monte Carlo (Bayesian-MCMC) approach is the key procedure in mapping QTL for complex binary traits,which provides a complete posterior distribution for QTL parameters using all prior information. As a consequence,Bayesian estimates of all interested vari-ables can be obtained straightforwardly basing on their posterior samples simulated by the MCMC algorithm. In our study,utilities of Bayesian-MCMC are demonstrated using simulated several ani-mal outbred full-sib families with different family structures for a complex binary trait underlied by both a QTL and polygene. Under the Identity-by-Descent-Based variance component random model,three samplers basing on MCMC,including Gibbs sampling,Metropolis algorithm and reversible jump MCMC,were implemented to generate the joint posterior distribution of all unknowns so that the QTL parameters were obtained by Bayesian statistical inferring. The results showed that Bayesian-MCMC approach could work well and robust under different family structures and QTL effects. As family size increases and the number of family decreases,the accuracy of the parameter estimates will be im-proved. When the true QTL has a small effect,using outbred population experiment design with large family size is the optimal mapping strategy.
Keywords:complex binary trait  QTL mapping  Bayesian-MCMC approach  outbred population  IBD-based variance component random model.
本文献已被 万方数据 SpringerLink 等数据库收录!
点击此处可从《中国科学:生命科学英文版》浏览原始摘要信息
点击此处可从《中国科学:生命科学英文版》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号