首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of monoclonal antibody binding domains of Na+,K(+)-ATPase by immunoelectron microscopy.
Authors:H P Ting-Beall  H C Beall  D F Hastings  M L Friedman  W J Ball
Affiliation:Department of Cell Biology, Duke University Medical Center, Durham, NC 27710.
Abstract:Treatment of purified preparations of porcine Na+,K(+)-ATPase with phospholipase A2, MgCl2 and NaVO3 leads to the formation of two-dimensional crystals exclusively in a dimeric configuration. Two-dimensional computer-averaged projections of the electron microscopy images of the crystalline enzyme with bound Fab fragments of monoclonal antibody M10-P5-C11 were accomplished using image enhancement software and showed that the antibody fragments caused only a modest increase in the unit cell size, while reducing the extent of asymmetry of the two promoters in each unit cell. The digital imaging also showed that the antibody's epitope on the alpha subunit resides on the 'lobe' or 'hook' region of the intracellular portion of the enzyme. Since functional studies indicate that M10-P5-C11 binds near or between the ATP binding site and the phosphorylation site, this visualized 'lobe' region of alpha may comprise the catalytic site. In addition, the binding of another inhibitory antibody, 9-A5, has been found to prevent crystal formation and the presence of the carbohydrate sugars on the enzyme's beta subunit shown to be required for crystal formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号