首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin-induced beta-arrestin1 Ser-412 phosphorylation is a mechanism for desensitization of ERK activation by Galphai-coupled receptors
Authors:Hupfeld Christopher J  Resnik Jamie L  Ugi Satoshi  Olefsky Jerrold M
Institution:Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla 92093, USA.
Abstract:Beta-arrestin1 is an adapter/scaffold for many G protein-coupled receptors during mitogen-activated protein kinase signaling. Phosphorylation of beta-arrestin1 at position Ser-412 is a regulator of beta-arrestin1 function, and in the present study, we showed that insulin led to a time- and dose-dependent increase in beta-arrestin1 Ser-412 phosphorylation, which blocked isoproterenol- and lysophosphatidic acid-induced Ser-412 dephosphorylation and impaired ERK signaling by these G protein-coupled receptor ligands. Insulin treatment also led to accumulation of Ser-412-phosphorylated beta-arrestin1 at the insulin-like growth factor 1 receptor and prevented insulin-like growth factor 1/Src association. Insulin-induced Ser-412 phosphorylation was partially dependent on ERK as treatment with the MEK inhibitor PD98059 inhibited the insulin effect (62% reduction, p = 0.03). Inhibition of phosphatidylinositol 3-kinase by wortmannin did not have a significant effect (9% reduction, p = 0.41). We also found that the protein phosphatase 2A (PP2A) was in a molecular complex with beta-arrestin1 and that the PP2A inhibitor okadaic acid increased Ser-412 phosphorylation. Concomitant addition of insulin and okadaic acid did not produce an additive effect on Ser-412 phosphorylation, suggesting a common mechanism. Small t antigen specifically inhibited PP2A, and in HIRcB cells expressing small t antigen, beta-arrestin1 Ser-412 phosphorylation was increased, and insulin had no further effect. Insulin treatment caused increased beta-arrestin1 Ser-412 phosphorylation, which blocked mitogen-activated protein kinase signaling and internalization by beta-arrestin1-dependent receptors with no effect on beta-adrenergic receptor Gs-mediated cAMP production. These findings provide a new mechanism for insulin-induced desensitization of ERK activation by Galphai-coupled receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号