首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering sensitive glutathione transferase for the detection of xenobiotics
Authors:Kapoli Panagiota  Axarli Irene A  Platis Dimitris  Fragoulaki Maria  Paine Mark  Hemingway Janet  Vontas John  Labrou Nikolaos E
Institution:Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
Abstract:Cytosolic glutathione transferases (GSTs) are a major reserve of high-capacity ligand binding proteins which recognise a large variety of hydrophobic compounds. In the present study, the binding of non-substrate xenobiotic compounds (herbicides and insecticides) to maize GST I was investigated by employing kinetic inhibition studies, site-directed mutagenesis and molecular modelling studies. The results showed that the xenobiotics bind at the substrate binding site. Based on in silico docking analysis, two residues were selected for assessing their contribution to xenobiotic binding. The mutant Gln53Ala of GST I Exhibits 9.2-fold higher inhibition potency for the insecticide malathion, compared to the wild-type enzyme. A potentiometric assay was developed for the determination of malathion using the Gln53Ala mutant enzyme. The assay explores the ability of the xenobiotic to promote inhibition of the GST-catalysing 1-chloro-2,4-dinitrobenzene (CDNB)/glutathione (GSH) conjugation reaction. The sensing scheme is based on the pH change occurring in a low buffer system by the GST reaction, which is measured potentiometrically using a pH electrode. Calibration curve was obtained for malathion, with useful concentration range 0-20muM. The method's reproducibility was in the order of +/-3-5% and malathion recoveries were 96.7+/-2.8%. Immobilized Gln53Ala mutant GST was used to assemble a biosensor for malathion. The enzyme was immobilized by crosslinking with glutaraldehyde and trapped behind a semipermeable membrane in front of the pH electrode. The results demonstrated that the immobilized enzyme behaved similar to free enzyme.
Keywords:Glutathione transferase  Ligandin binding site  Malathion  Potentiometric assay  Xenobiotics
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号