首页 | 本学科首页   官方微博 | 高级检索  
   检索      


D-serine dehydratase from Escherichia coli. DNA sequence and identification of catalytically inactive glycine to aspartic acid variants
Authors:M Marceau  E McFall  S D Lewis  J A Shafer
Institution:Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
Abstract:We have identified two glycyl residues whose integrity is essential for the catalytic competence of a model pyridoxal 5'-phosphate requiring enzyme, D-serine dehydratase from Escherichia coli. This was accomplished by isolating and sequencing the structural gene from wild type E. coli and from two mutant strains that produce inactive D-serine dehydratase. DNA sequencing indicated the presence of a single glycine to aspartic acid replacement in each variant. The amino acid replacements lie in a glycine-rich region of D-serine dehydratase well removed from pyridoxal 5'-phosphate-binding lysine 118 in the primary structure of the enzyme. The striking effect of these two glycine to aspartic acid replacements on catalytic activity, the conservation of the glycine-rich region in several pyridoxal 5'-phosphate-dependent enzymes that catalyze alpha/beta-eliminations, and the placement of similar glycine-rich sequences in well-characterized active site structures suggest that the glycine-rich region interacts with the cofactor at the active site of the enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号