首页 | 本学科首页   官方微博 | 高级检索  
     


Functional analysis of thermo-sensitive TRPV1 in an aquatic vertebrate,masu salmon (Oncorhynchus masou ishikawae)
Authors:A. Yoshimura  S. Saito  C.T. Saito  K. Takahashi  M. Tominaga  T. Ohta
Affiliation:1. Department of Veterinary Pharmacology, Tottori University, Tottori, Japan;2. Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan;3. Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Aichi, Japan;4. Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
Abstract:Transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in nociceptive primary sensory neurons and acts as a sensor for heat and capsaicin. The functional properties of TRPV1 have been reported to vary among species and, in some cases, the species difference in its thermal sensitivity is likely to be associated with thermal habitat conditions. To clarify the functional properties and physiological roles of TRPV1 in aquatic vertebrates, we examined the temperature and chemical sensitivities of TRPV1 in masu salmon (Oncorhynchus masou ishikawae, Om) belonging to a family of salmonids that generally prefer cool environments. First, behavioral experiments were conducted using a video tracking system. Application of capsaicin, a TRPV1 agonist, induced locomotor activities in juvenile Om. Increasing the ambient temperature also elicited locomotor activity potentiated by capsaicin. RT-PCR revealed TRPV1 expression in gills as well as spinal cord. Next, electrophysiological analyses of OmTRPV1 were performed using a two-electrode voltage-clamp technique with a Xenopus oocyte expression system. Heat stimulation evoked an inward current in heterologously expressed OmTRPV1. In addition, capsaicin produced current responses in OmTRPV1-expressing oocytes, but higher concentrations were needed for its activation compared to the mammalian orthologues. These results indicate that Om senses environmental stimuli (heat and capsaicin) through the activation of TRPV1, and this channel may play important roles in avoiding environments disadvantageous for survival in aquatic vertebrates.
Keywords:Capsaicin  Salmonids  Species differences  Thermo-sensor  HEPES"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  N-2-hydroxyethyl-piperazine-2-ethanonesufonic acid  Om"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  $$"  :[{"  #name"  :"  italic"  ,"  _"  :"  Oncorhynchus masou ishikawae  TRPV1"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Transient receptor potential vanilloid 1
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号