首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of antioxidant metabolism by translation initiation factor 2alpha
Authors:Tan S  Somia N  Maher P  Schubert D
Affiliation:Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
Abstract:Oxidative stress and highly specific decreases in glutathione (GSH) are associated with nerve cell death in Parkinson's disease. Using an experimental nerve cell model for oxidative stress and an expression cloning strategy, a gene involved in oxidative stress-induced programmed cell death was identified which both mediates the cell death program and regulates GSH levels. Two stress-resistant clones were isolated which contain antisense gene fragments of the translation initiation factor (eIF)2alpha and express a low amount of eIF2alpha. Sensitivity is restored when the clones are transfected with full-length eIF2alpha; transfection of wild-type cells with the truncated eIF2alpha gene confers resistance. The phosphorylation of eIF2alpha also results in resistance to oxidative stress. In wild-type cells, oxidative stress results in rapid GSH depletion, a large increase in peroxide levels, and an influx of Ca(2+). In contrast, the resistant clones maintain high GSH levels and show no elevation in peroxides or Ca(2+) when stressed, and the GSH synthetic enzyme gamma-glutamyl cysteine synthetase (gammaGCS) is elevated. The change in gammaGCS is regulated by a translational mechanism. Therefore, eIF2alpha is a critical regulatory factor in the response of nerve cells to oxidative stress and in the control of the major intracellular antioxidant, GSH, and may play a central role in the many neurodegenerative diseases associated with oxidative stress.
Keywords:oxidative stress   glutathione   eIF2α   resistance   glutamate
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号