The copper-enzyme dopamine beta-monooxygenase: studies on the ability of several metals to inhibit the enzyme activity and to replace the copper |
| |
Authors: | T Skotland T Flatmark |
| |
Affiliation: | Department of Biochemistry, University of Bergen, Bergen Norway |
| |
Abstract: | The ability of several metals to inhibit dopamine beta-monooxygenase was measured and compared with their ability to compete with the binding of 64Cu to the water-soluble form of the bovine adrenal enzyme at pH 6.0. In the presence of an optimal concentration of copper (0.5 microM in the present assay system), an inhibition was observed upon addition of Hg(II), Zn(II), or Ni(II). Only a small fraction of the inhibition with these metals may be due to uncoupling of electron transport from hydroxylation. Preincubation of these metals with the Cu-depleted apoenzyme before addition of copper, revealed a stronger inhibition than if copper was added before the other metals. Hg(II), Zn(II), and Ni(II) also compete with the binding of 64Cu(II) to the protein. Hg(II) was the most effective and Ni(II) the least effective of these metals, both with respect to inhibition of the enzyme activity and to prevent the binding of 64Cu(II). Competition experiments on the binding of Zn(II) and 64Cu in the presence and absence of ascorbate, indicated i) a similar affinity of Cu(I) and Cu(II) to the native enzyme, and ii) a more rapid binding of Cu(I) than Cu(II) to the Cu-depleted and Zn-containing enzyme. Al(III), Fe(II), Mg(II), Mn(II), Co(II), Cd(II), and Pb(II) neither inhibited the enzyme activity nor competed with the binding of 64Cu(II) to the protein (Fe(II) was not tested for binding). Of those metals cited above only Cu(II)/Cu(I) was able to reactivate the apoenzyme. |
| |
Keywords: | Address reprint requests to Dr. Tore Skotland Department of Biochemistry University of Bergen Årstadveien 19 N-5000 Bergen Norway. |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|