首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Host-Pathogen Interactions : XXIX. Oligogalacturonides Released from Sodium Polypectate by Endopolygalacturonic Acid Lyase Are Elicitors of Phytoalexins in Soybean
Authors:Davis K R  Darvill A G  Albersheim P  Dell A
Institution:Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, University of Colorado, Campus Box 215, Boulder Colorado 80309.
Abstract:Recent studies have demonstrated that an apparently homogeneous preparation of an α-1,4-d-endopolygalacturonic acid lyase (EC 4.2.2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max L.] Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate (KR Davis et al. 1984 Plant Physiol 74: 52-60). The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of α-1,4-d-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-β-l-5-threohexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-α-1,4-d-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively. These results confirm and extend previous observations that oligogalacturonides derived from the pectic polysaccharides of plant cell walls can serve as regulatory molecules that induce phytoalexin accumulation in soybean. These results are consistent with the hypothesis that oligogalacturonides play a role in disease resistance in plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号