首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Community structure of microorganisms associated with reddish-brown iron-rich snow
Authors:Hisaya Kojima  Haruo Fukuhara  Manabu Fukui
Institution:aThe Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan;bFaculty of Education, Niigata University, Niigata, Japan
Abstract:Reddish-brown colored snow, containing spherical brown particles, has been observed in several mires in Japan. In order to characterize this remarkable phenomenon, the microbial community and chemical species in snow were analyzed. A core sample of snow which had a colored region was investigated and it revealed vertical shifts in physicochemical characteristics and the microbial community structure. The abundance of particles peaked within the colored layer, and correlated with the amount of reducible Fe(III). The interstitial water of the colored layer was enriched with Fe(II), and characterized by reduced concentration of dissolved methane. The bacterial community in the colored region was characterized by higher relative abundance of iron-reducing bacteria and methanotrophs. Aggregates of the brown particles were found as precipitates in snow melt pools, and were subjected to cloning analyses targeting several different genes. The majority of bacterial 16S rRNA gene clones belonged to the class Betaproteobacteria or the phylum Bacteroidetes. No snow algae were detected in the eukaryotic small subunit rRNA gene clone library. As a possible carbon source to sustain the community in the snow, involvements of carbon dioxide and methane were investigated by analyzing the genes involved in their assimilation. In the analyses of genes for ribulose-1,5-biphosphate carboxylase/oxygenase, clones related to sulfur oxidizers were obtained. The analysis of particulate methane monooxygenase genes indicated dominance of Methylobacter species. These results emphasized the uniqueness of this phenomenon, and iron reducers of the genus Geobacter are suggested to be the key organisms that could be investigated in order to understand the mechanism of this phenomenon.
Keywords:Microbial community  Iron  Geobacter  Snow coverage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号