首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence of fast serotonin transmission in frog slowly adapting type 1 responses
Abstract:The Merkel cell–neurite (MCN) complex generates slowly adapting type 1 (SA1) response when mechanically stimulated. Both serotonin (5-HT) and glutamate have been implicated in the generation of normal SA1 responses, but previous studies have been inconclusive as to what their roles are or how synaptic transmission occurs. In this study, excised dorsal skin patches from common water frogs (Rana ridibunda) were stimulated by von Frey hairs during perfusion in a tissue bath, and single-unit spike activity was recorded from SA1 fibres. Serotonin had no significant effect on the SA1 response at low (10?µM) concentration, significantly increased activity in a force-independent manner at 100?µM, but decreased activity with reduced responsiveness to force at 1?mM. Glutamate showed no effect on the responsiveness to force at 100?µM. MDL 72222 (100?µM), an ionotropic 5-HT3 receptor antagonist, completely abolished the responsiveness to force, suggesting that serotonin is released from Merkel cells as a result of mechanical stimulation, and activated 5-HT3 receptors on the neurite. The metabotropic 5-HT2 receptor antagonist, ketanserin, greatly reduced the SA1 fibre's responsiveness to force, as did the non-specific glutamate receptor antagonist, kynurenic acid. This supports a role for serotonin and glutamate as neuromodulators in the MCN complex, possibly by activation and/or inhibition of signalling cascades in the Merkel cell associated with vesicle release. Additionally, it was observed that SA1 responses contained a force-independent component, similar to a dynamic response observed during mechanical vibrations.
Keywords:Somatosensation  Merkel cell  tactile  mechanoreceptor  serotonin receptor  glutamate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号