首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced Delivery and Antitumor Effect of Doxorubicin Encapsulated in Long-Circulating Liposomes
Abstract:Abstract

Long-circulating liposomes containing amphipathic polyethyleneglycol (PEG) or ganglioside GM1 (GM1) have been tested for their utility as enhanced delivery system of doxorubicin (DXR) in vivo. DXR was entrapped into liposomes by pH gradient method.

The long-circulating LUV (200 nm in size) composed of DSPC/CH (1:1, m/m) and either 6 mol% of DSPE-PEG1000 or GM1 entrapped DXR with >95% in trapping efficiency. DXR-long-circulating LUVs were administered to leukemic (LI210) mice via the tail vein at a dose of 5mg DXR/kg. The high blood concentration was kept for long time, and significantly increased survival time was observed as compared with free DXR and DXR-LUV. The data indicated that DXR was slowly released from long-circulating LUV during that stayed in bloodstream for long time. Administration of DXR-long-circulating SUV (100 nm) to the colon 26 bearing mice produced the increased DXR level in tumor compared with bear SUV or free drug did, respectively, and resulted in effective tumor growth retardation and increased survival time. DXR was delivered to tumor by accumulation of SUVs themselves.

Long-circulating thermosensitive liposomes (TSL) were prepared from DPPC /DSPC (9:1, m/m) and 3-6 mol% of PEG1000 or GM1. DXR was entrapped with >95% in trapping efficiency. Accumulation of DXR into tumor tissue by local hyperthermia after injection of DXR-long-circulating TSL to colon 26 bearing mice was significantly higher man that of DXR-bare TSL or free DXR, and resulted in effective tumor growth retardation and increased survival time. It was suggested that the entrapped DXR was efficiently released from long-circulating TSL by hyperthermia at the tumor site and entered the tumor tissue by simple diffusion.
Keywords:Liposomes  Doxorubicin  Long-circulating liposome  Poly(ethylene glycol)  Monosialoganglioside GM1  L1210 leukemia cell  Colon carcinoma 26 cell  Drug delivery system
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号