首页 | 本学科首页   官方微博 | 高级检索  
     


EVOLUTION AND COADAPTATION OF THERMOREGULATORY BEHAVIOR AND WING PIGMENTATION PATTERN IN PIERID BUTTERFLIES
Authors:Joel G. Kingsolver
Abstract:This paper addresses the question of how the relationship between morphological structure and functional performance differs in related groups of organisms. I describe the relationship between a suite of phenotypic characters (behavioral posture and the pattern of wing pigmentation) and one function of these characters (thermoregulatory performance) for two groups of butterflies in the family Pieridae, focusing on how behavior and wing pattern interact to affect specific aspects of thermoregulation. Using both natural and experimentally created variation in wing-melanization patterns, I develop and test a series of predictions about the relations among thermoregulatory posture, melanization pattern, body temperature, and flight activity. Results show that increased melanization in different wing regions has positive, negative, or neutral effects in increasing body temperature of Pieris butterflies. The angle of the wings used during basking alters the relative importance of different modes of heat transfer and thereby determines the contribution of different dorsal wing regions to thermoregulation. Experimentally increased dorsal melanization can either increase or decrease the onset of flight activity and can directly alter thermoregulatory posture. For Pieris, dorsal melanization affects basking and flight, while ventral melanization primarily affects overheating. These results are used to generate a functional map relating melanization pattern to thermoregulatory performance in Pieris. Reflectance-basking posture, white background color, and melanization pattern represent coadapted characters in Pieris that interact to determine thermoregulatory performance. The differences in thermoregulatory posture and background color between pierid butterflies in the subfamilies Pierinae and Coliadinae have led to a reorganization and partial reversal of the thermoregulatory effects of melanization pattern. I suggest that this change in the physical mechanism of thermoregulatory adaption in pierids has qualitatively altered the nature of selection on wing-melanization pattern.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号