首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site.
Authors:Y Henry  H Wood  J P Morrissey  E Petfalski  S Kearsey  and D Tollervey
Institution:EMBL, Heidelberg, Germany.
Abstract:We have developed techniques for the detailed analysis of cis-acting sequences in the pre-rRNA of Saccharomyces cerevisiae and used these to study the processing of internal transcribed spacer 1 (ITS1) leading to the synthesis of 5.8S rRNA. As is the case for many eukaryotes, the 5' end of yeast 5.8S rRNA is heterogeneous; we designate the major, short form 5.8S(S), and the minor form (which is seven or eight nucleotides longer) 5.8S(L). These RNAs do not have a precursor/product relationship, but result from the use of alternative processing pathways. In the major pathway, a previously unidentified processing site in ITS1, designated A3, is cleaved. A 10 nucleotide deletion at site A3 strongly inhibits processing of A3 and the synthesis of 5.8S(S); processing is predominantly transferred to the alternative 5.8S(L) pathway. Site A3 lies 76 nucleotides 5' to the end of 5.8S(S), and acts as an entry site for 5'-->3' exonuclease digestion which generates the 5' end of 5.8S(S). This pathway is inhibited in strains mutant for XRN1p and RAT1p. Both of these proteins have been reported to have 5'-->3' exonuclease activity in vitro. Formation of 5.8S(L) is increased by mutations at A3 in cis or in RAT1p and XRN1p in trans, and is kinetically faster than 5.8S(S) synthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号