首页 | 本学科首页   官方微博 | 高级检索  
     


Use of an extracellular,ion-selective,vibrating microelectrode system for the quantification of K+, H+, and Ca2+ fluxes in maize roots and maize suspension cells
Authors:Leon V. Kochian  Jon E. Shaff  Wiel M. Kühtreiber  Lionel F. Jaffe  William J. Lucas
Affiliation:(1) U.S. Plant, Soil and Nutrition Laboratory, USDA-ARS, Cornell University, 14853 Ithaca, NY, USA;(2) BioHybrid Technologies, Inc., 01545 Shrewsbury, MA, USA;(3) Marine Biological Laboratory, 02543 Woods Hole, MA, USA;(4) Section of Botany, Division of Biological Sciences, University of California, 95616 Davis, CA, USA
Abstract:An ion-selective vibrating-microelectrode system, which was originally used to measure extracellular Ca2+ gradients generated by Ca2+ currents, was used to study K+, H+ and Ca2+ transport in intact maize (Zea mays L.) roots and individual maize suspension cells. Comparisons were made between the vibrating ion-selective microelectrode, and a technique using stationary ion-selective microelectrodes to measure ionic gradients in the unstirred layer at the surface of plant roots. The vibrating-microelectrode system was shown to be a major improvement over stationary ion-selective microelectrodes, in terms of sensitivity and temporal resolution. With the vibrating ion microelectrode, it was easy to monitor K+ influxes into maize roots in a background K+ concentration of 10 mM or more, while stationary K+ electrodes were limited to measurements in a background K+ concentration of 0.3 mM or less. Also, with this system it was possible to conduct a detailed study of root Ca2+ transport, which was previously not possible because of the small fluxes involved. For example, we were able to investigate the effect of the excision of maize roots on Ca2+ influx. When an intact maize root was excised from the seedling at a position 3 cm from the site of measurement of Ca2+ transport, a rapid fourfold stimulation of Ca2+ influx was observed followed by dramatic oscillations in Ca2+ flux, oscillating between Ca2+ influx and efflux. These results clearly demonstrate that wound or perturbation responses of plant organs involve transient alterations in Ca2+ transport, which had previously been inferred by demonstrations of touch-induced changes in cytoplasmic calcium. The sensitivity of this system allows for the measurement of ion fluxes in individual plant cells. Using vibrating K+ and H+electrodes, it was possible to measure H+efflux and both K+ influx and efflux in individual maize suspension cells under different conditions. The availability of this technique will greatly improve our ability to study ion transport at the cellular level, in intact plant tissues and organs, and in specialized cells, such as root hairs or guard cells.Symbol DeltaX amplitude of vibrationThe authors would like to thank Richard Sanger for his invaluable work on the design and improvement of the ion-selective vibratingmicroelectrode system. The research presented here was supported in part by U.S. Department of Agriculture Competitive Grant No. 90-37261-5411 to Leon Kochian and William Lucas.
Keywords:Ion transport  Microelectrode (ion-selective, vibrating)  Suspension cell  Zea (ion transport)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号