首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The glycine-rich sequence of the beta subunit of Escherichia coli H(+)-ATPase is important for activity
Authors:M Takeyama  K Ihara  Y Moriyama  T Noumi  K Ida  N Tomioka  A Itai  M Maeda  M Futai
Institution:Institute of Scientific and Industrial Research, Osaka University, Japan.
Abstract:A short sequence motif rich in glycine residues, Gly-X-X-X-X-Gly-Lys-Thr/Ser, has been found in many nucleotide-binding proteins including the beta subunit of Escherichia coli H(+)-ATPase (Gly-Gly-Ala-Gly-Val-Gly-Lys-Thr, residues 149-156). The following mutations were introduced in this region of the cloned E. coli unc operon carried by a plasmid pBWU1: Ala-151----Pro or Val; insertion of a Gly residue between Lys-155 and Thr-156; and replacement of the region by the corresponding sequence of adenylate kinase (Gly-Gly-Pro-Gly-Ser-Gly-Lys-Gly-Thr) or p21 ras protein (ras) (Gly-Ala-Gly-Gly-Val-Gly-Lys-Ser). All F0F1 subunits were synthesized in the deletion strain of the unc operon-dependent on pBWU1 with mutations, and essentially the same amounts of H(+)-ATPase with these mutant beta subunits were found in membranes. The adenylate kinase and Gly insertion mutants showed no oxidative phosphorylation or ATPase activity, whereas the Pro-151 mutants had higher ATPase activity than the wild-type, and the Val-151 and ras mutants had significant activity. It is striking that the enzyme with the ras mutation (differing in three amino acids from the beta sequence) had about half the membrane ATPase activity of the wild-type. These results together with the simulated three-dimensional structures of the wild-type and mutant sequences suggest that in mutant beta subunits with no ATPase activity projection of Thr-156 residues was opposite to that in the wild-type, and that the size and direction of projection of residue 151 are important for the enzyme activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号