首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding of a distamycin-ellipticine hybrid molecule to DNA and chromatin: spectroscopic, biochemical, and molecular modeling investigations.
Authors:C Bourdouxhe  P Colson  C Houssier  J S Sun  T Montenay-Garestier  C Hélène  C Rivalle  E Bisagni  M J Waring  J P Hénichart
Institution:Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Belgium.
Abstract:A bifunctional molecule in which an ellipticine chromophore is attached to a distamycin residue via a diaminopropyl tether has been designed and synthesized in the expectation of creating a hybrid molecule capable of bidentate binding to DNA by both intercalation and minor-groove interactions. The strength and mode of binding to DNA of this conjugate have been studied by means of circular and linear dichroism as well as by stopped-flow kinetics and measurements of reactivity toward a chemical probe. The results converge to reveal that the ellipticine moiety of the hybrid largely dominates the binding reaction with DNA. In the presence of chromatin, the hybrid molecule binds preferentially to the internucleosomal DNA, a preference dictated by its intercalating chromophore. Theoretical computations were performed on the comparative complexation energies of distamycin, the ellipticine derivative, and the hybrid ligand with a B-representative octanucleotide, d(GCATATGC)2. The best binding configuration of the ellipticine derivative locates its aminoalkyl side chain in the minor groove where distamycin is also present. The molecular modeling analysis fully supports the involvement of a bimodal binding process for the hybrid and reveals that the binding of the conjugate to DNA favors a pronounced bending toward the minor groove. This effect is attributed to intercalation of the ellipticine chromophore. An interesting link is established between the DEPC reactivity experiments and the theoretical computations, suggesting that DEPC can be used as a probe for drug-induced DNA bending. On the basis of these results, we propose the design of a new hybrid ligand bearing an additional positively-charged amidine side chain to confer higher DNA-binding affinity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号