首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides
Authors:Anantharamaiah G M  Mishra Vinod K  Garber David W  Datta Geeta  Handattu Shaila P  Palgunachari Mayakonda N  Chaddha Manjula  Navab Mohamad  Reddy Srinivasa T  Segrest Jere P  Fogelman Alan M
Institution:Department of Medicine, Biochemistry, and Molecular Genetics and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, AL 35294, USA. ananth@uab.edu
Abstract:Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.
Keywords:atherosclerosis  high density lipoprotein  hyperlipidemia  lipoproteins
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号