首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modeling Hair Cell Tuning by Expression Gradients of Potassium Channel β Subunits
Authors:Krishnan RamanathanPaul A Fuchs
Institution:The Center for Hearing and Balance, Department of Biomedical Engineering and Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195 USA
Abstract:The receptor potential of sensory hair cells arises from the gating of mechanosensitive cation channels, but its amplitude and time course also depend on the number and kinetics of voltage-gated ion channels in each cell. Prominent among these are “BK” potassium channels encoded by the slo gene that support electrical tuning in some hair cells. Hair cells tuned to low frequencies have slowly gating BK channels, whereas those of higher-frequency hair cells gate more rapidly. Alternative splicing of the slo gene mRNA that encodes the pore-forming α subunit can alter BK channel kinetics, and gating is dramatically slowed by coexpression with modulatory β subunits. The effect of the β subunit is consistent with low-frequency tuning, and β mRNA is expressed at highest levels in the low frequency apex of the bird’s auditory epithelium. How might an expression gradient of β subunits contribute to hair cell tuning? The present work uses a computational model of hair cell-tuning based on the functional properties of BK channels expressed from hair cell α and βslo cDNA. The model reveals that a limited tonotopic gradient could be achieved simply by altering the fraction of BK channels in each hair cell that are combined with β subunits. However, complete coverage of the tuning spectrum requires kinetic variants in addition to those modeled here.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号