首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration
Authors:Vincent E J Jassey  Monika K Reczuga  Ma?gorzata Zielińska  Sandra S?owińska  Bjorn J M Robroek  Pierre Mariotte  Christophe V W Seppey  Enrique Lara  Jan Barabach  Micha? S?owiński  Luca Bragazza  Bogdan H Chojnicki  Mariusz Lamentowicz  Edward A D Mitchell  Alexandre Buttler
Institution:1. Functional Ecology and Environment laboratory, University of Toulouse, CNRS, INP, UPS, Toulouse Cedex, France;2. Ecological Systems Laboratory (ECOS), School of Architecture, Civil and Environmental Engineering (ENAC), école Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;3. WSL—Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Lausanne, Switzerland;4. Laboratory of Wetland Ecology and Monitoring & Department of Biogeography and Palaeoecology, Adam Mickiewicz University, Poznań, Poland;5. Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland;6. Biological Sciences, University of Southampton, Southampton, UK;7. Laboratory of Soil Biodiversity, University of Neuchatel, Neuchatel, Switzerland;8. Arctic and Marine Biology Department, University of Troms?, Troms?, Norway;9. Real Jardín Botánico, CSIC, Madrid, Spain;10. Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warszawa, Poland;11. Department of Life Science and Biotechnologies, University of Ferrara, Ferrara, Italy;12. Meteorology Department, Poznan University of Life Sciences, Poznań, Poland;13. Botanical Garden of Neuchatel, Neuchatel, Switzerland
Abstract:Ecosystems are increasingly prone to climate extremes, such as drought, with long‐lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem's response to droughts, raising the issue of nonlinear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands—a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of ?24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the nonlinear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes.
Keywords:biodiversity–  ecosystem functioning  ecosystem shifts  fungal diversity  hydrolases  moving window structural equation   model  oxidases  plant–  soil feedbacks  threshold
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号