首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin
Authors:Capodagli Glenn C  McKercher Marissa A  Baker Erica A  Masters Emily M  Brunzelle Joseph S  Pegan Scott D
Institution:Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado,1 Department of Molecular Pharmacology and Biochemistry, Northwestern University, Evanston, Illinois2
Abstract:Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA ssRNA(−)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union and the Congo, CCHF has rapidly spread across large sections of Europe, Asia, and Africa. Recent reports have identified a viral homologue of the ovarian tumor protease superfamily (vOTU) within its L protein. This protease has subsequently been implicated in downregulation of the type I interferon immune response through cleavage of posttranslational modifying proteins ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15). Additionally, homologues of vOTU have been suggested to perform similar roles in the positive-sense, single-stranded RNA ssRNA(+)] arteriviruses. By utilizing X-ray crystallographic techniques, the structure of vOTU covalently bound to ubiquitin propylamine, a suicide substrate of the enzyme, was elucidated to 1.7 Å, revealing unique structural elements that define this new subclass of the OTU superfamily. In addition, kinetic studies were carried out with aminomethylcoumarin (AMC) conjugates of monomeric Ub, ISG15, and NEDD8 (neural precursor cell expressed, developmentally downregulated 8) substrates in order to provide quantitative insights into vOTU''s preference for Ub and Ub-like substrates.Crimean-Congo hemorrhagic fever (CCHF) is characterized in humans by the sudden onset of fever, myalgia, headache, dizziness, sore eyes, photophobia, and hyperanemia as well as severe hemorrhages (28, 43, 46). The causative agent of CCHF is the CCHF virus, which is a tick-borne, negative-sense, single-stranded RNA ssRNA(−)] virus of the genus Nairovirus, belonging to the viral family Bunyaviridae. Originally named after outbreaks in the former Soviet Union and in the Congo during the mid-20th century, the affected area of this disease has rapidly spread to large areas of sub-Saharan Africa, the Balkans, Northern Greece, European Russia, Pakistan, the Arabian Peninsula, Iran, Afghanistan, Iraq, Turkey, and recently, the Xinjiang province of China (43, 46). The CCHF viral genome, as well as those of the closely related Dugbe and Nairobi viruses, consists of three negative-sense RNA segments, small (S), medium (M), and large (L). Incubation of CCHF is 5 to 6 days, with fatalities occurring less than 7 days after signs of infection. Fatality rates for patients infected with the CCHF virus ranged from 5% to 70%, depending on phylogenetic variation of the virus, transmission route, treatment facility, and the reporting and confirmation of the case statistics (19, 32, 43, 47).The innate immune system serves as the human''s first line of defense from invading pathogens, including CCHF virus. The type I interferon (IFN) response comprises a key component of this system by upregulating more than 300 IFN-stimulated genes (ISGs) whose products detect viral molecules, promote amplification of the type I IFN response, modulate other signaling pathways, and directly provide antiviral activity (34). Regulation of the type I IFN response has been shown to rely on posttranslational modification by ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15) (14, 23). Both Ub and ISG15 are expressed in a proform and cleaved to leave a double-glycine C terminus that forms an isopeptide bond with predominantly the ɛ-NH2 of lysine residues of a target protein through a three-step enzymatic process. In addition to forming isopeptide bonds with target proteins, Ub, which contains seven lysine residues, has been observed to form poly-Ub chains. The most studied of these moieties are K29-linked, K48-linked, and K63-linked poly-Ub. While K29-linked and K48-linked polyubiquitination of proteins leads to their degradation in the lysosome and proteasome, respectively, conjugation of K63-linked poly-Ub to proteins has an activating effect, resulting in an enhanced type I IFN response (2, 7, 18, 33, 40). Currently, more than 150 proteins have been identified as forming conjugates with ISG15, with the number of proteins forming Ub conjugates far exceeding that number (12, 48). A subset of type I IFN signaling and effector proteins that Ub and ISG15 have been shown to stabilize includes JAK1, STAT1/2, double-stranded RNA-dependent protein kinase (PKR), myxovirus-resistant protein A (MxA), and RIG-I (17). MxA has particularly shown to be important in type I IFN response to CCHF infection. RIG-I and several other proteins have also been shown to be targets for K63-linked poly-Ub (4).Recently, investigators have identified a cysteine viral ovarian tumor domain (vOTU) protease colocated with the RNA-dependent RNA polymerase in the L protein of the CCHF virus (14). Interestingly, as CCHF is an ssRNA(−) virus, no protease is required to cleave a viral polypeptide to facilitate viral replication as in positive-sense ssRNA ssRNA(+)] viruses. Furthermore, recent reports have observed that vOTU is not required for RNA-dependent RNA polymerase activity and for vOTU protease activity linked to impairment of the type I IFN response through its deubiquitinating and deISGylating activity (6, 14). Additional studies have also tentatively identified the presence of vOTU homologues in the Arterivirus genus of the Arteriviridae family, suggesting that they too may facilitate impairment of the type I IFN response (14). Since the discovery of the first ovarian tumor domain (OTU) protease in Drosophila oogenesis and prior to the identification of vOTU, OTU superfamily members could be divided into three subclasses according to their sequence homology, otubains, A20-like OTUs, and ubiquitin thioesterase ZRANB1 (22). With the addition of the viral OTU subclass, OTU superfamily members in more than 100 eukaryotic, bacterial, and viral proteins have now been identified (6, 27). Predominantly, OTU proteases have been linked to ubiquitin (Ub) removal and/or remodeling of Ub-conjugated proteins, placing them among five protease superfamilies that facilitate signal transduction cascades and play key roles in protein stability (22). However, vOTU is unique in that it is the only OTU to have shown both deubiquitinating and deISGylating activity (14). Instead, Otubain1/2 (OTUB1/2) plays a key role in T cell response and prefers K48-linked poly-Ub or NEDD8 (neural precursor cell expressed, developmentally downregulated 8) as a substrate (12). A20 and A20-like Cezanne OTU proteases are negative regulators of the NF-κB-mediated inflammation response, selectively cleaving K63-linked poly-Ub targets. DUBA also shows preference for K63-linked poly-Ub (20). In attempts to better understand the OTU superfamily, structures of OTUB and A20-like OTU domains have been elucidated (12, 21, 30). An X-ray structure of the yeast ovarian tumor 1 (yOTU1) domain, which interacts with Cdc48 and has a preference for K48-linked poly-Ub, was achieved in complex with mono-Ub (27). However, since yOTU1 has a preference for K48-linked Ub and possesses low sequence identity to vOTU and other OTU domain proteases, only limited information on vOTU could be obtained. In addition to vOTU, several other viral proteases, such as papain-like protease (PLpro) from the severe acute respiratory syndrome (SARS) coronavirus, have also shown deubiquitinating and deISGylating activity to evade the innate immune system (6, 8, 43, 49). However, no viral proteases that are known to possess deISGylating activity have been visualized as being bound to Ub or Ub-like substrates. To address this issue and elucidate the atomic-level structure of a member from the viral OTU superfamily subclass, we have obtained the X-ray crystal structure of vOTU bound with Ub (vOTU-Ub). We also have characterized the vOTU substrate specificity for mono-Ub, ISG15, and NEDD8 and compared the results with those from human OTUB2 (hOTUB2). Additionally, we assessed vOTU''s deubiquitinating activity toward K48- and K63-linked poly-Ub.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号