首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus
Authors:Banizs Boglarka  Pike Martin M  Millican C Leigh  Ferguson William B  Komlosi Peter  Sheetz James  Bell Phillip D  Schwiebert Erik M  Yoder Bradley K
Institution:Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Abstract:Cilia are complex organelles involved in sensory perception and fluid or cell movement. They are constructed through a highly conserved process called intraflagellar transport (IFT). Mutations in IFT genes, such as Tg737, result in severe developmental defects and disease. In the case of the Tg737orpk mutants, these pathological alterations include cystic kidney disease, biliary and pancreatic duct abnormalities, skeletal patterning defects, and hydrocephalus. Here, we explore the connection between cilia dysfunction and the development of hydrocephalus by using the Tg737orpk mutants. Our analysis indicates that cilia on cells of the brain ventricles of Tg737orpk mutant mice are severely malformed. On the ependymal cells, these defects lead to disorganized beating and impaired cerebrospinal fluid (CSF) movement. However, the loss of the cilia beat and CSF flow is not the initiating factor, as the pathology is present prior to the development of motile cilia on these cells and CSF flow is not impaired at early stages of the disease. Rather, our results suggest that loss of cilia leads to altered function of the choroid plexus epithelium, as evidenced by elevated intracellular cAMP levels and increased chloride concentration in the CSF. These data suggest that cilia function is necessary for regulating ion transport and CSF production, as well as for CSF flow through the ventricles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号