首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation.
Authors:K Xu  J Delling  T Elliott
Institution:Department of Microbiology, University of Alabama, Birmingham 35294.
Abstract:Insertion mutagenesis has been used to isolate Salmonella typhimurium strains that are blocked in the conversion of 5-aminolevulinic acid (ALA) to heme. These mutants define the steps of the heme biosynthetic pathway after ALA. Insertions were recovered at five unlinked loci: hemB, hemCD, and hemE, which have been mapped previously in S. typhimurium, and hemG and hemH, which have been described only for Escherichia coli. No other simple hem mutants were found. However, double mutants are described that are auxotrophic for heme during aerobic growth and fail to convert coproporphyrinogen III to protoporphyrinogen IX. These mutant strains are defective in two genes, hemN and hemF. Single mutants defective only in hemN require heme for anaerobic growth on glycerol plus nitrate but not for aerobic growth on glycerol. Mutants defective only in hemF have no apparent growth defect. We suggest that these two genes encode alternative forms of coproporphyrinogen oxidase. Anaerobic heme synthesis requires hemN function, while either hemN or hemF is sufficient for aerobic heme synthesis. These phenotypes are consistent with the requirement of a well-characterized class of coproporphyrinogen oxidase for molecular oxygen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号