首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The population-dynamic functions of seed dispersal
Authors:Venable  D L  Brown  J S
Institution:(1) Department of Ecology and Evolutionary Biology, University of Arizona, 85721 Tuscon, AZ, USA;(2) Department of Biological Sciences, University of Illinois, Box 4348, 60680 Chicago, IL, USA
Abstract:We summarize some of the population-dynamic consequences of the mosaic structure of plant populations for the evolution of seed dispersal. A fairly elaborated set of theoretical ideas exist regarding the evolution of dispersal and we have synthesized some of them in an attempt to make them more accessible to field ecologists. We consider the relationship of these general theoretical ideas to our understanding of fruit and seed dispersal.We develop three related models to describe the similarities and differences in how dispersal functions for risk reduction (bet hedging), escaping the negative consequences of crowding, and escaping high concentrations of relatives. We also briefly discuss directed dispersal as a fourth population-dynamic aspect of dispersal. Dispersal can have a risk-reducing function only when there is global (metapopulation) temporal variance in success. Dispersal to escape the negative consequences of crowding requires only spatial and local temporal environmental variation. Dispersal for escaping high concentrations of relatives requires no environmental variation, but does require genetic population structure. Directed dispersal, defined as non-random into particular patch types contingent on the expectation of local success, is always valuable when possible and represents an advantage independent the others which can occur with random dispersal.In an effort to accommodate for the differences between simple mathematical models and the behavior of complex natural fruit and seed dispersal systems we have discussed the following issues: actual patterns of patch structure and dispersal distance; the implications of plant cosexuality, perenniality, and allocation costs of dispersal structures; and the impact of the detailed nature of density dependence, breeding systems, and genetic structure. We briefly compare the population-dynamic functions of dispersal presented here with the widely cited functions of colonization, escape, and directed dispersal. Finally, we suggest how the theoretical models can be used with field data to estimate the fitness consequences of dispersal.
Keywords:Allocation costs  Bet-hedging  Breeding systems  Density dependence  Dispersal  Metapopulations  Patch structure  Sib competition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号