首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altitudinal and seasonal variation of frost resistance of Fagus crenata and Betula ermanii along the Pacific slope of Mt. Fuji, Japan
Authors:DirK Gansert  Katharina Backes  Yoshitaka Kakubari
Institution:Institute of Silviculture, Faculty of Agriculture, Shizuoka University, Ohya 836, Shizuoka 422–8529, Japan
Abstract:1 Frost resistance of Fagus crenata (Siebold's beech) and Betula ermanii (Japanese mountain birch) was investigated with respect to the species' altitudinal distribution on the Pacific slope of Mt. Fuji from 1996 to 1997. Flint's Index of Injury, which is based on electrolyte leakage from freeze-injured tissue, was used to assess frost hardiness of shoots produced in the previous growing season.
2 Fagus crenata is found on the lower slopes (700–1600 m a.s.l.). Mid- to late November hardening of shoots was enhanced, midwinter damage below −30 °C reduced and dehardening delayed nearer the upper limit. To here temperatures began to rise at least 3 weeks before dehardening began. Shade crown shoots were more susceptible to deep-freeze damage than light crown shoots. If the ultimate upper distribution limit was determined by frost hardiness, F. crenata would be expected to occur up to 1800 m altitude.
3 Betula ermanii is found between 1600 m and 2800 m, and intensive hardening occurred at all altitudes during the second half of October. Frost hardiness increased considerably with altitude up to the forest limit, where frost acclimation preceded the temperature decline by 2 weeks. Once maximum frost resistance had been attained freezing to −47 °C failed to cause tissue injury. Dehardening began slightly later at the tree line, but the time–course was the same at all altitudes. Main and lateral shoots did not differ in frost hardiness.
4 Comparison of monthly air temperature minima over the past 66 years with the course of frost resistance showed that F. crenata and B. ermanii found on the Pacific slope of Mt. Fuji were unlikely to suffer damage by frost.
5 The observed uppermost distribution limit for B. ermanii at 2800 m altitude on Mt. Fuji is considered both with our observations and with previous hypotheses.
Keywords:electrolyte leakage  forest limit  index of injury  relative conductivity  vertical distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号