首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in metabolically competent V79 cells
Authors:R Edenharder  J W Sager  H Glatt  E Muckel  K L Platt
Institution:a Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany;b German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, D-14558, Bergholz-Rehbrücke, Germany;c Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131, Mainz, Germany
Abstract:Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC50=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC50=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-β- -arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzoa]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay Food Chem. Toxicol. 32 (1994) 443; Mutat. Res. 341 (1995) 303].
Keywords:Chinese hamster lung fibroblasts  Fruits  Vegetables  Antigenotoxicity  Heterocyclic aromatic amines  Cooked food mutagens  Mechanisms of antigenotoxicity  Comet assay  HPRT mutagenicity test
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号