首页 | 本学科首页   官方微博 | 高级检索  
     


Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation)
Authors:Vanlerberghe G. C.  Day D. A.  Wiskich J. T.  Vanlerberghe A. E.  McIntosh L.
Affiliation:Michigan State University/Department of Energy Plant Research Laboratory and Biochemistry Department, Michigan State University, East Lansing, Michigan 48824 (G.C.V., A.E.V., L.M.).
Abstract:Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号