Failure of prior low-intensity exercise to potentiate the thermic effect of glucose |
| |
Authors: | J L Treadway J C Young |
| |
Affiliation: | Department of Health Sciences, Sargent College of Allied Health Professions, Boston University, MA 02215. |
| |
Abstract: | We have previously shown that following recovery from 45 min exercise at 67% maximum oxygen consumption (VO2max) the thermic effect of a glucose load is increased by 65% over that observed on a non-exercise day (Young et al. 1986). The purpose of this study was to determine if potentiation of the thermic effect of glucose by prior exercise is dependent on exercise intensity. The thermic response to a 1674 kJ glucose load was measured in five subjects in the absence of exercise (control) and following recovery from 45 min cycling exercise at each of three intensities: low (34% VO2max), moderate (54% VO2max), and high (75% VO2max). The average percentage increase in oxygen consumption over baseline due to glucose ingestion was similar for the control (9.9%, SE 2.0%), and the low- (10.2%, SE 0.9%) and moderate- (12.6%, SE 1.2%) intensity exercise conditions, while a significant increase in average VO2 was observed after the high-intensity condition (18.0%, SE 2.3%, P less than 0.05). The total energy expenditure (kJ) over baseline for 3 h was also similar for the control (84.5, SE 11.7), and the low-(100.0, SE 9.2) and moderate- (118.8, SE 5.0) intensity exercise conditions. The thermic response following high-intensity exercise (146.4 kJ, SE 13.4) was significantly greater than that observed in the control (P less than 0.01) or low-intensity (P less than 0.05) exercise conditions. These findings demonstrate that unlike prior high-intensity exercise (75% VO2max), low- or moderate-intensity exercise (i.e., 34% or 54% VO2max) fails to potentiate the thermic effect of a glucose load.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|