首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrical coupling between the human serotonin transporter and voltage-gated Ca channels
Authors:Iwona Ruchala  Vanessa Cabra  Ernesto Solis Jr  Richard A Glennon  Louis J De Felice  Jose M Eltit
Institution:1. Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States;2. Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
Abstract:Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca2+ mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca2+ permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca2+ channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca2+ channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca2+ transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca2+ channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca2+-driven signals in excitable cells.
Keywords:Calcium channels  Calcium imaging  L-type calcium channel  N-type calcium channel  Monoamine transporters  Neurotransmitter transport  Skeletal muscle  Excitability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号