首页 | 本学科首页   官方微博 | 高级检索  
     


NMR based metabonomics study of NPY Y5 receptor activation in BT-549, a human breast carcinoma cell line
Authors:Miki Watanabe  Sulaiman Sheriff  Nijiati Kadeer  Junho Cho  Kenneth B. Lewis  Ambikaipakan Balasubramaniam  Michael A. Kennedy
Affiliation:1. Department of Chemistry and Biochemistry, Miami University, 106 Hughes Laboratories, Oxford, OH, 45056, USA
2. Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH, USA
3. Shriners Hospital for Children, Cincinnati, OH, 45229, USA
4. Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
Abstract:Overexpression of neuropeptide Y (NPY) and its receptors has been found in various cancers. In our previous study, we demonstrated expression of NPY Y5 receptor (Y5R) in various breast cancer cell lines along with Y1 receptor. In Y5R expressing BT-549 cells, NPY induced cell proliferation that was blocked by Y5R-selective antagonist CGP1683A (CGP). Here, NMR-based metabonomics was used to monitor the metabolic profile of BT-549 cells in the presence of NPY and CGP to assess the effect of Y5R activation and inhibition during NPY-induced cell proliferation. To study changes in intra and extra cellular metabolites in response to various treatments, 1D 1H-NMR spectra of both hydrophilic cell extracts and growth medium were recorded from BT-549 with three treatments: (1) NPY, (2) CGP, and (3) CGP followed by NPY (CGP/NPY). Principal component analysis and statistical significance analysis indicated changes in intracellular concentrations of seven metabolites in hydrophilic cell extracts with NPY treatment: decreases in lactate, succinate, myo-inositol, and creatine, and increases in acetate, glutamate, and aspartate. A significant increase in intracellular lactate level and attenuation of other metabolites to baseline was detected in CGP/NPY group. Also, significant decreases in lactate and increases in pyruvate were observed in growth medium from NPY treated cells. Based on the metabonomics analysis, Y5R activation induces cell proliferation by increasing the rate of glycolysis, glutaminolysis, and TCA cycle. Inhibition of Y5R by CGP counteracts NPY-induced changes in cellular metabolites. These changes may play a role in cell proliferation and migration by NPY through Y5R activation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号