首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The layered structure of coronary adventitia under mechanical load
Authors:Chen Huan  Liu Yi  Slipchenko Mikhail N  Zhao Xuefeng  Cheng Ji-Xin  Kassab Ghassan S
Institution:Department of Biomedical Engineering, Indiana University-Purdue University-Indianapolis, Indianapolis, Indiana;Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana;§Departments of Surgery and Cellular and Integrative Physiology, Indiana University-Purdue University-Indianapolis, Indianapolis, Indiana
Abstract:The mechanical loading-deformation relation of elastin and collagen fibril bundles is fundamental to understanding the microstructural properties of tissue. Here, we use multiphoton microscopy to obtain quantitative data of elastin and collagen fiber bundles under in situ loading of coronary adventitia. Simultaneous loading-imaging experiments on unstained fresh coronary adventitia allowed morphometric measurements of collagen and elastin fibril bundles and their individual deformation. Fiber data were analyzed at five different distension loading points (circumferential stretch ratio λθ = 1.0, 1.2, 1.4, 1.6, and 1.8) at a physiological axial stretch ratio of λaxial = 1.3. Four fiber geometrical parameters were used to quantify the fibers: orientation angle, waviness, width, and area fraction. The results show that elastin and collagen fibers in inner adventitia form concentric densely packed fiber sheets, and the fiber orientation angle, width, and area fraction vary transmurally. The extent of fiber deformation depends on the initial orientation angle at no-distension state (λθ = 1.0 and λaxial = 1.3). At higher distension loading, the orientation angle and waviness of fibers decrease linearly, but the width of collagen fiber is relatively constant at λθ = 1.0–1.4 and then decrease linearly for λθ ≥ 1.4. A decrease of the relative dispersion (SD/mean) of collagen fiber waviness suggests a heterogeneous mechanical response to loads. This study provides fundamental microstructural data for coronary artery biomechanics and we consider it seminal for structural models.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号