首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis of a fluorine-18 labeled derivative of epibatidine for in vivo nicotinic acetylcholine receptor PET imaging
Authors:Dolci L  Dolle F  Valette H  Vaufrey F  Fuseau C  Bottlaender M  Crouzel C
Institution:Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, CEA, Orsay, France.
Abstract:Epibatidine (exo-2-(2'-chloro-5'-pyridyl)-7-azabicyclo2.2.1]heptane), a natural compound isolated from the skin of the Ecuadorian poison frog Epipedobates tricolor, is the most potent nicotinic acetylcholine receptor (nAChR) agonist reported to date. In order to visualize and quantify in vivo these receptors in human brain using Positron Emission Tomography (PET), 18F]norchlorofluoroepibatidine (exo-2-(2'-18F]fluoro-5'-pyridyl)-7-azabicyclo2.2.1]heptane), a fluorine-18 (t(1/2): 110 min) radiolabeled derivative of epibatidine has been designed. The corresponding 2'-bromo-, 2'-iodo- and 2'-nitro exo-2-(5'-pyridyl)-7-azabicyclo2.2.1]heptane analogues as labeling precursors, as well as norchlorofluoroepibatidine as a reference compound have been synthesized by reductive, stereoselective, palladium-catalyzed Heck-type coupling between an N-Boc protected azanorbornene and the corresponding halopyridine. 18F]Norchlorofluoroepibatidine has been radiolabeled with fluorine-18 by nucleophilic aromatic substitution from the corresponding Boc-protected halo- and nitro precursors using 18F]FK-K222 complex in DMSO by conventional heating (at 150-180 degrees C for 10 min) or microwave activations (at 100 Watt, for 1 to 2.5 min), followed by TFA-removal of the protective group. Typically, using the microwave activation procedure, 60-80 mCi (2.22-2.96 GBq) of pure 18F]norchlorofluoroepibatidine could be obtained in less than 2 h (110-115 min) from the bromo labeling precursor, with specific radioactivities of 1.5-2.5 Ci/micromol (55.5-92.5 GBq/micromol) calculated for End of Bombardment. The preliminary PET experiments in baboon (Papio papio) with 18F]norchlorofluoroepibatidine show a high uptake and a rapid accumulation of the radiotracer into the brain within 30 min. In the thalamus, a nAChR rich area, uptake of radioactivity reached a maximum at 40 min (10% I.D./100 mL tissue). The ratio of radioactivity thalamus/cerebellum (the latter being a nAChR poor area) was 2 at 40 min and increased with time, up to 4.3 at 160 min. Its specific regiodistribution and its high ratio of specific-to-nonspecific binding confirm the ideal profile of 18F]norchlorofluoroepibatidine as a suitable radioligand for PET imaging of nAChRs in the brain.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号