Site-specific aflatoxin B1 adduction of sequence-positioned nucleosome core particles |
| |
Authors: | R Moyer K Mari?n K van Holde G Bailey |
| |
Affiliation: | Department of Biochemistry, Oregon State University, Corvallis 97331. |
| |
Abstract: | The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. We have circumvented this problem by using nucleosomes that are homogenous in DNA sequence and hence in DNA-histone contact points. A cloned DNA fragment containing a sea urchin 5 S gene which precisely positions a histone octamer was employed. By using 32P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate and the bulky alkylating agent aflatoxin B1-dichloride (AFB1-Cl2) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in the sequence-positioned core particle. We find dimethyl sulfate to bind with equal preference to naked or nucleosomal DNA. In contrast, AFB1-Cl2 binding is suppressed an average of 2.4-fold at guanyl sites within nucleosomes compared with AFB1-Cl2 affinity at the corresponding site in naked DNA. The DNA is more accessible in regions near the particle boundary. We observe no other histone-imposed localized changes in AFB1-Cl2 sequence specificity. Further, sites of DNase I cleavage or proposed DNA bending show neither enhanced nor reduced AFB1-Cl2 adduction to N7-guanine. Since AFB1-Cl2 binding sites lie in the major groove, nucleosomal DNA appears accessible to AFB1-Cl2 at all points of analysis but with an access which is uniformly restricted in the central 100 nucleotides of the core particle. The data available do not indicate further localized or site-specific perturbations in DNA interactions with the two carcinogens studied. |
| |
Keywords: | |
|
|