首页 | 本学科首页   官方微博 | 高级检索  
   检索      


C-Terminal acidic domain of ubiquitin-conjugating enzymes: a multi-functional conserved intrinsically disordered domain in family 3 of E2 enzymes
Authors:Arrigoni Alberto  Grillo Barbara  Vitriolo Alessandro  De Gioia Luca  Papaleo Elena
Institution:Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
Abstract:E2 ubiquitin-conjugating enzymes are key elements of the ubiquitin (Ub) pathway, since they influence processivity and topology of the Ub chain assembly and, as a consequence, the fate of the target substrates. E2s are multi-domain proteins, with accessory N-terminal or C-terminal domains that can contribute to the specificity for the cognate Ub-like molecules, or even the E3. In this context, the thorough structural characterization of E2 accessory domains is mandatory, in particular when they are associated to specific functions. We here provide, by computational and comparative studies, the first evidence of an acidic domain (AD) conserved in the E2 sub-family 3R. It is an intrinsically disordered domain, in which elements for Ub or E3 recognition are maintained. This conserved acidic domain (AD) shows propensity for α-helix structures (185-192 and 204-218) in the proximity of the sites for interaction with the Ub or the cognate E3. Moreover, our results also suggest that AD can explore conformations with tertiary contacts mainly driven by aromatic and hydrophobic interactions, in absence of its interaction partners. The globular states are likely to be regulated by multiple phosphorylation events, which can trigger conformational changes toward more extended conformations, as judged by MD simulations of the phospho-variants. The extended conformations, in turn, promote the accessibility of the interaction sites for Ub and the E3. We also trace a parallel between this new and natively unfolded structural motif for Ub-recognition and the natively folded ubiquitin associated domain (UBA) typical of family 1 of E2 enzymes, which includes Ubc1. In fact, according to our calculations, Ubc1 maps at the interface between the space of the natively unfolded and folded proteins, as well as it shares common features with the acidic domain of family 3 members.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号