首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of Lens Gap Junctions by Transforming Growth Factor Beta
Authors:Bruce A. Boswell  Judy K. VanSlyke  Linda S. Musil
Affiliation:Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
Abstract:Gap junction–mediated intercellular communication (GJIC) is essential for the proper function of many organs, including the lens. GJIC in lens epithelial cells is increased by FGF in a concentration-dependent process that has been linked to the intralenticular gradient of GJIC required for lens transparency. Unlike FGF, elevated levels of TGF-β are associated with lens dysfunction. We show that TGF–β1 or -2 up-regulates dye coupling in serum-free primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) via a mechanism distinct from that utilized by other growth factors. Remarkably, the ability of TGF-β and of FGF to up-regulate GJIC is abolished if DCDMLs are simultaneously exposed to both factors despite undiminished cell–cell contact. This reduction in dye coupling is attributable to an inhibition of gap junction assembly. Connexin 45.6, 43, and 56–containing gap junctions are restored, and intercellular dye coupling is increased, if the activity of p38 kinase is blocked. Our data reveal a new type of cross-talk between the FGF and TGF-β pathways, as well as a novel role for TGF-β and p38 kinase in the regulation of GJIC. They also provide an explanation for how pathologically increased TGF-β signaling could contribute to cataract formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号