首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Angiogenic Inhibitor Long Pentraxin PTX3 Forms an Asymmetric Octamer with Two Binding Sites for FGF2
Authors:Antonio Inforzato  Clair Baldock  Thomas A Jowitt  David F Holmes  Ragnar Lindstedt  Marcella Marcellini  Vincenzo Rivieccio  David C Briggs  Karl E Kadler  Antonio Verdoliva  Barbara Bottazzi  Alberto Mantovani  Giovanni Salvatori  Anthony J Day
Abstract:The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.
Keywords:Electron Microscopy (EM)  Growth Factors  Protein Domains  Ultracentrifugation  X-ray Scattering  FGF2 Binding  Long Pentraxin  Multiangle Laser Light Scattering (MALLS)  Vascular Biology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号