Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA |
| |
Authors: | Ann E. Scheunemann William D. Graham Franck A. P. Vendeix Paul F. Agris |
| |
Affiliation: | Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA |
| |
Abstract: | Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides. |
| |
Keywords: | |
|
|