首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers
Authors:Li Xu  Liu Kerh Li  Li Jun  Tan Eunice Phay Shing  Chan Lee Meng  Lim Chwee Teck  Goh Suat Hong
Institution:Institute of Materials Research and Engineering, National University of Singapore, 3 Research Link, Singapore.
Abstract:Novel biodegradable amphiphilic alternating block copolymers based on poly(R)-3-hydroxybutyrate] (PHB) as biodegradable and hydrophobic block and poly(ethylene glycol) (PEG) as hydrophilic block (PHB-alt-PEG) were successfully synthesized through coupling reaction. Their chemical structures have been characterized by using gel permeation chromatography, (1)H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) analysis revealed that both PHB and PEG blocks in PHB-alt-PEG block copolymers can crystallize to form separate crystalline phase except in those with a short PEG block (M(n) 600) only PHB crystalline phase has been observed. However, due to the mutual interference from each other, the melting transition of both PHB and PEG crystalline phases shifted to lower temperature with lower crystallinity in comparison with corresponding pure PHB and PEG. The crystallization behavior of PHB block and PEG block has also been studied by X-ray diffraction, and the results were in good agreement with those deduced from DSC study. The surface morphologies of PHB-alt-PEG block copolymer thin films spin-coated on mica have been visualized by atomic force microscopy with tapping mode, indicating formation of laterally regular lamellar surface patterns. Static water contact angle measurement revealed that surface hydrophilicity of these spin-coated thin films increases with increasing PEG block content.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号