首页 | 本学科首页   官方微博 | 高级检索  
     


The mechanism of microtubule associated cytoplasmic transport
Authors:Dr. Jeremy S. Hyams  Howard Stebbings
Affiliation:(1) Department of Biological Sciences, University of Exeter, Exeter, UK;(2) Department of Botany and Microbiology, University College London, Gower Street, WC1E 6BT London, England
Abstract:Summary The nutritive tubes of telotrophic insect ovaries are cytoplasmic channels along which ribosomes are transported over distances of several mm from trophic cells to the developing oocytes. The presence within the nutritive tubes of a massive number of orientated microtubules renders them strongly birefringent in polarised light, a property which, together with their size, rendered them amenable to isolation by microdissection. Ultrastructurally the isolated tubes were indistinguishable from undissected controls. Polyacrylamide gels revealed a consistent pattern of some 30 bands of which tubulin was the most prominent. The tubes also contained a band which comigrated with the major high molecular weight micro tubule associated protein (MAP) from mouse brain but no detectable actin, myosin or dynein. Microtubules in the isolated tubes were not depolymerised by treatments (cold, calcium and colchicine) which typically disrupt cytoplasmic microtubules. Following extraction of the membrane enclosing the tubes and the cytoplasmic matrix the microtubule cytoskeleton persisted, retaining its cylindrical organisation although no bridges between the microtubules were detected in the electron microscope. The possibility that the stability and spatial deployment of the nutritive tube microtubules is conferred by specific microtubule accessory proteins is discussed.
Keywords:Cytoplasmic transport  Microtubules  Insect ovary
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号