首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolism of 18:2(n - 6), 18:3(n - 3), 20:4(n - 6) and 20:5(n - 3) by the fungus Gaeumannomyces graminis: identification of metabolites formed by 8-hydroxylation and by w2 and w3 oxygenation.
Authors:I D Brodowsky  E H Oliw
Institution:Department of Pharmaceutical Pharmacology, Uppsala University, Sweden.
Abstract:The present study was aimed at developing a cell-free preparation of Gaeumannomyces graminis to biosynthesize w2-hydroxy, w3-hydroxy and related metabolites of essential fatty acids. 14C-labelled linoleic acid (18:2(n - 6)), linolenic acid (18:3(n - 3)), arachidonic acid (20:4(n - 6)) and eicosapentaenoic acid (20:5(n - 3)) were incubated with the cytosolic and microsomal fractions and NADPH. Significant metabolism was only found in the cytosol. The main products were purified by high-performance liquid chromatography and identified by gas chromatography-mass spectrometry (GC-MS). 18:2(n - 6) was metabolized mainly to 8-hydroxy-9,12-octadecadienoic acid (8-HODE), while the w2 and the w3 alcohols were formed in relatively small amounts. The absolute configuration of the 8-hydroxyl was found to be R by ozonolysis of the diastereoisomeric (-)-menthoxycarbonyl derivative of 8-HODE and GC-MS analysis. In analogy, 18:3(n - 3) was converted to 8-hydroxy-9,12,15-octadecatrienoic acid and to smaller amounts of the 15,16-diol (15,16-DiHODE). In contrast, 8-hydroxy metabolites of 20:4(n - 6) or 20:5(n - 3) could not be detected. 20:4(n - 6) was efficiently converted to 18(R)-hydroxyeicosatetraenoic acid (18(R)-HETE) and 19(R)-HETE and to traces of 17-HETE, while 20:5(n - 3) was mainly metabolized to the 17,18-diol (17,18-DiHETE) and to smaller amounts of the w2 alcohol. In conclusion, the cytosol of G. graminis can be used for stereoselective biosynthesis of some hydroxy metabolites of essential fatty acids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号