Immunological alteration of the Bloom's syndrome uracil DNA glycosylase in Epstein-Barr virus-transformed human lymphoblastoid cells |
| |
Authors: | G Seal E E Henderson M A Sirover |
| |
Affiliation: | Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140. |
| |
Abstract: | The immunological reactivity of the uracil DNA glycosylase was investigated in three Epstein-Barr virus-transformed human lymphoblastoid cell lines. Two were derived from normal human lymphocytes while the third was derived from a Bloom's syndrome patient. A panel of 3 anti-human placental uracil DNA glycosylase monoclonal antibodies (37.04.12, 40.10.09 and 42.08.07) was used. Immunological reactivity was determined in a double-blind enzyme-linked immunosorbent assay (ELISA); by inhibition of enzyme activity; and by immunoblot analysis. In the ELISA, the glycosylase from each lymphoblastoid cell line was recognized by glycosylase antibodies 37.04.12 and 42.08.07. In contrast, antibody 40.10.09 failed to recognize the glycosylase from the Bloom's syndrome cell line. Further analysis demonstrated that the 40.10.09 antibody was unable to inhibit catalysis by the Bloom's syndrome lymphoblast glycosylase. In contrast, the 40.10.09 antibody inhibited the activity of the two normal human lymphoblast enzymes. Denaturation of the Bloom's syndrome lymphoblast glycosylase rendered that protein immunoreactive with the 40.10.09 antibody. These results demonstrated that: (1) the immunological alteration in the Bloom's syndrome uracil DNA glycosylase was detected in hematopoietic cells; and (2) viral transformation did not affect the immunoreactivity of the enzyme from either normal human or Bloom's syndrome cells. |
| |
Keywords: | |
|
|